ФРАСТ-МЗакрытое Акционерное Общество НачалоОтправить письмо
---
---
|
|
---

Формирование плёнки фоторезиста

1.Режимы формирования плёнки фоторезиста

температура окружающей среды, оС 20 + 2
температура раствора фоторезиста, оС 20 + 2
скорость вращения ротора центрифуги, об/мин 3000 + 50
время центрифугирования, сек 40

В фоторезисты введена специальная добавка, обеспечивающая высокую степень однородности пленки по толщине. Локальная разнотолщинность пленки не превышает 10 нм.

Номинальное значение толщины пленки фоторезиста, указано в таблице для стандартных условий (скорость вращения центрифуги 3000 об/мин, время вращения 40 сек, 21 оС, влажность 45 % и т.д.). Такая толщина пленки не обязательно будет формироваться в условиях потребителей.
Толщина пленки существенно зависит от вариации скорости вращения центрифуги. Эта зависимость описывается простой формулой:

Толщина (мкм) = const / (скорость)1/2

Величина const определяется одним замером толщины пленки фоторезиста при фиксированной скорости вращения центрифуги для данных условий.

Зависимость толщины пленки для фоторезистов ФП-05Ф - ФП-20Ф представлена на графике:

2.Предварительная сушка пленки фоторезиста:

температура в конвективном шкафу , оС 90
время сушки, мин 30

Назначение предварительной сушки - это удаление растворителя и таким образом высушивание резистивной пленки. Из-за высокой точки кипения растворителя (>130 оC) растворитель всегда остается в небольших количествах в высушенной пленке в количествах примерно нескольких процентов (до 10%). Этот остаточный растворитель влияет на скорость растворения экспонированного фоторезиста и, следовательно, на светочувствительность. Поэтому условия предварительной сушки должны хорошо контролироваться для воспроизводимого технологического процесса.

Если фоторезист подвергается в течение длительного периода воздействию высоких температур выше 100 оC, то светочувствительный нафтохинондиазид термически разлагается и литографическая эффективность пленки падает. Поэтому температура в конвективном шкафу 90 оC и время сушки 30 минут являются нормальными. Необходимо обратить внимание, что сушильный шкаф должен быть конвективным с принудительной циркуляцией. В противном случае время сушки возрастает на время, необходимое для достижения в шкафу без конвекции стационарной температуры 90 оC.

Ситуация меняется, если сушка осуществляется на горячей плите. В этом случае время сушки укорачивается обычно до 40-50 сек. Так как кремний является хорошим проводником тепла, то равновесная температура достигается уже примерно через 10 сек. По этой причине температура сушки на горячей плите обычно на 10-20 оC выше, чем в печи. Приемлемые условия сушки на горячей плите - это 110 оC в течение 45 сек.

Экспонирование:

источник излучения ртутная лампа высокого давления
освещенность в плоскости экспонирования 15-20 тыс. люкс
область спектральной чувствительности 310 - 440 нм
время экспонирования 4020 -30 сек

Все позитивные фоторезисты чувствительны к ультрафиолетовому свету, поэтому обычно используются ртутные лампы. Энергия света должна поглощаться фотоактивным соединением - нафтохинондиазидом. При экспонировании нафтохинондиазид превращается в инденкарбоновую кислоту. Эта кислота затем растворяется в щелочном проявителе. Спектральная чувствительность фоторезиста определяется двумя факторами: ниже 310 нм новолачная смола, входящая в состав фоторезиста проявляет сильное поглощение, предотвращая проникновение ультрафиолетового света в пленку фоторезиста, выше 440 нм нафтохинондиазид проявляет слабое поглощение на "хвосте" вплоть до 475 нм, выше этих длин волн фоторезист совершенно прозрачен и не проявляет светочувствительности. Таким образом, все работы с пленкой фоторезиста могут проводиться при желтом освещении.

Вышеуказанном диапазоне длин волн есть три максимума эмиссии ртутной лампы при: 365 нм (i-линия), 405 нм (h-линия) и 436 нм (g-линия). Современные проекционные установки используют либо выделенную фильтрами линию длин волн (главным образом g и i -линии), либо две, либо все три линии -широкополосное экспонирование.

Во время экспонирования поглощение светочувствительного нафтохинондиазида падает из-за превращения в инденкарбоновую кислоту. Это одна из причин, обеспечивающих высокую разрешающую способность позитивных фоторезистов с практически вертикальными стенками профиля. В начале экспонирования облучаемая зона поверхности пленки становится более прозрачной по сравнению с не экспонируемой зоной. Таким образом, на поверхности пленки формируется виртуальная фотомаска для экспонирования нижележащих слоев, превращение нафтохинондиазида протекает далее в пленке фоторезиста до подложки.

Экспонирование позитивного фоторезиста следует выполнять при контролируемых окружающих условиях, особенно относительной влажности и температуры. Это требование вытекает из того, что превращение нафтохинондиазида в проявляемую инденкарбоновую кислоту требует одной молекулы воды на одну молекулу нафтохинондиазида. Если воды нет, то нафтохинондиазид сшивается в нерастворимое соединение, экспонированные зоны пленки не будут проявляться в проявителе. Необходимая для реакции вода не содержится в пленке, а адсорбируется как влага из атмосферы. По этой причине фоточувствительность фоторезиста резко падает при относительной влажности менее 30%.

Верхний предел относительной влажности не определяется самим фоторезистом, однако, если относительная влажность выше 60%, на поверхности подложки будет абсорбироваться слишком много воды, что в конечном итоге приводит к потере адгезии фоторезиста. По этой причине можно рекомендовать относительную влажность на уровне 45%. Гигроскопичную поверхность подложки можно обрабатывать HMDS до нанесения фоторезиста.

Оптимизация условий экспонирования для фоторезистов ФП-05Ф - ФП -20Ф приведена в разделе оптимизация.

Пост - экспозиционная сушка (до проявления).

В большинстве случаях нет необходимости в пост - экспозиционной сушке. Экспонированный фоторезист может проявляться немедленно после экспонирования. Однако в некоторых случаях литографическая эффективность может быть улучшена путем применения пост - экспозиционной сушки (после экспонирования и до проявления). Особенно это касается экспонирования монохроматическим светом (степперы g- и i - линии). Энергия света, поглощаемая слоями фоторезиста, меняется по толщине пленки. Эта вариация обусловлена в первую очередь интерференцией падающего и отраженного от подложки света. В результате этого явления образуются так называемые "стоячие волны", видимые вдоль профиля стенки с помощью электронного микроскопа. Так как большинство поверхностей вызывают фазовый сдвиг волны на 1800 для отраженного света, то на поверхности раздела фоторезист- подложка будет наблюдаться минимум интенсивности света. Если поверхностный слой подложки является прозрачным (окись кремния), то становится существенным толщина слоя окиси кремния. В результате этого явления на подложке может оставаться тончайший "налет" слабо экспонированного фоторезиста, который не удаляется при проявлении. Для удаления этого слоя приходится прибегать к существенному переэкспонированию фоторезиста. Стоячие волны являются видимой частью интерференционного эффекта. Этот эффект приводит к значительному изменению дозы экспонирования при изменении толщины пленки вдоль поверхности. Изменение толщины на 65 нм (четверть длины волны g - линии) может привести к 20% изменению дозы экспонирования. Для i-линии и ДУФ-фоторезистов этот эффект еще сильнее. Такие изменения толщины пленки наблюдаются на любой поверхности. Эти эффекты могут быть минимизированы с помощью пост - экспозиционной сушки. Температура для этой сушки должна быть на 20 оС выше температуры предварительной сушки, а время около 45 - 60 сек. В процессе этого нагрева происходит до определенной степени диффузия экспонированного и не экспонированного нафтохинондиазида и в результате наблюдается выравнивание различий в скорости растворения и, таким образом выглаживание профиля фоторезиста. Чем выше разность температур между предварительной сушкой и пост - экспозиционной сушкой, тем быстрее процесс диффузии. Однако температура пост - экспозиционной сушки не должна превышать 130 оС, чтобы избежать значительного термического разложения нафтохинондиазида. Наилучшее решение 110 оС в течении 50 сек. Кроме того введение пост - экспозиционной сушки улучшает адгезию и термическую стабильность профиля фоторезиста.

Проявление

проявитель 1% раствор КОН (или 0,4-0,5% NaOH)
время проявления в свежем проявителе 20 - 50 сек

Экспонированные области фоторезиста растворяются на стадии проявления. Условия проявления определяются прежде всего типом фоторезиста. Каждая марка фоторезиста имеет оптимальное время проявления. В большинстве случаев время проявления находится в пределах 20 - 50 сек, только фоторезисты большой толщины (> 3 мкм) требуют большего времени проявления.

Температура проявления сама по себе не является критической и обычная комнатная температура (20 - 25 оС) является приемлемой, однако для воспроизводимости процесса важно поддерживать температуру проявителя постоянной в пределах +1 оС.

Более детально стадия проявление для фоторезистов ФП-05Ф - ФП-20Ф обсуждается в разделе оптимизация фотолитографического процесса.

Задубливание

Цель стадии задубливания - это дальнейшая стабилизация пленки фоторезиста перед травлением. Обычная температура 140 оС в течение 30 минут в конвективном шкафу. На стадии задубливания удаляется остаточный растворитель, происходит термическое разложение нафтохинондиазида и структурирование пленки фоторезиста. Эти процессы улучшают адгезию и стойкость пленки к травителям.

Необходимо иметь в виду два фактора:
  1. Термический шкаф должен обязательно иметь принудительную конвекцию, чтобы время нагрева пленки до температуры задубливания было минимальной. В противном случае время задубливания необходимо увеличить.
  2. Задубливание необходимо осуществлять непосредственно перед травлением (максимум за 2 часа). Если этот период длиннее, то задубливание необходимо повторить перед травлением.
При плазмохимическом травлении с целью наилучшего сохранения профиля рисунка рекомендуется три ступени задубливания:
I ступень:110 оС-15 мин
II ступень:120 оС-15 мин
III ступень:140 оС-15 мин.

Оптимизация.

На графике приведены кривые проявления фоторезистов ФП-10Ф, ФП-15Ф и ФП-20Ф
Экспонирование осуществлялось параллельным, полным светом лампы ДРШ-1000 при освещенности света в плоскости пленки фоторезиста 15.000 - 20.000 люкс. На практике используют ртутные лампы разной мощности, полный или монохроматический свет, освещенность меняется в процессе старения лампы, часть световой энергии поглощается фотошаблоном, люксометры требуют постоянной калибровки. Поэтому возникает важный вопрос об оптимальном времени экспонирования. Время экспонирования и время проявления тесно связаны между собой. Недостаточное время экспонирования требует в последующем перепроявления фоторезиста. Для фоторезистов с небольшим контрастом (малая устойчивость пленки фоторезиста) недостаточное экспонирование можно частично выправить перепроявлением. Однако разрешение фоторезиста при этом падает, профиль стенок фоторезиста становится более пологой. Для высококонтрастных фоторезистов необходима оптимизации времен экспонирования и проявления, при этом достигается практически вертикальность профиля стенок фоторезиста.

Фоторезисты ФП-10Ф, ФП-15Ф, ФП-20Ф являются контрастными фоторезистами, требующие оптимального выбора времени экспонирования. Из приведенного выше графика видно, что начиная с определенного для каждого фоторезиста времени экспонирования наблюдается резкое увеличение время проявления. Данная точка является критической. При недостаточном времени экспонирования пленка фоторезиста будет проявляться очень долго.

Приведенные графики позволяют оптимизировать время экспонирования, путем фиксирования времени проявления фоторезиста.
Таким образом, оптимальные времена проявления составляют:
Фоторезист ФП-10Ф - 15-20 сек
Фоторезист ФП-15Ф - 30-35 сек
Фоторезист ФП-20Ф - 45 -50 сек

Исходя из этих данных, подбирают требуемое время экспонирования фоторезиста для конкретных аппаратных условий. Если время экспонирования недостаточно, то пленка будет проявляться более длительное время вне указанных пределов проявления для определенного фоторезиста. Если время экспонирования велико, то время проявление сокращается, но это нежелательно с точки зрения производительности процесса.
---
|
|
---
---
Plant.ruTopListSpyLOG