Фоторезисты для глубокого ультрафиолета.

Минимальное разрешение в фотолитографии является функцией длины волны экспонирующего УФ - света и числовой апертуры фокусирующей системы.

В соответствие с критерием Релея предельное разрешение оптической системы определяется формулой (1):

$$R = k_1 * \frac{\lambda}{NA} (1).$$

При этом глубина фокуса вычисляется по формуле:

$$DF = k_2 * \frac{\lambda}{NA^2} (2),$$

где R — разрешение, λ — длина волны света, $N\!A$ - числовая апертура объектива, k_1 и k_2 — константы.

Из формулы (1) вытекает, что размеры элементов можно уменьшить как путем уменьшения длины волны, так и посредством увеличения числовой апертуры. Однако увеличение числовой апертуры уменьшает глубину фокуса объектива в квадратичной зависимости. По этой причине доминирующим подходом в литографии за прошедшие 40 лет являлось уменьшение длины волны света:

- Длина волны ртутной лампы 436 нм, числовая апертура 0,35. Разрешение фоторезиста 1 мкм, уровень интеграции микросхем 1 Мb
- Длина волны ртутной лампы 365 нм, числовая апертура 0,35. Разрешение фоторезиста 0,6-0,7 мкм, уровень интеграции микросхем 4 Мb
- Длина волны ртутной лампы 365 нм, числовая апертура 0,5-0,6. Разрешение фоторезиста 0,4-0,5 мкм, уровень интеграции микросхем 16 Мb
- Дальний ультрафиолет. Длина волны эксимерного лазера KrF 248 нм, числовая апертура 0,6. Разрешение фоторезиста 0,25 мкм, уровень интеграции микросхем 64 Мb
- Дальний ультрафиолет. Длина волны эксимерного лазера ArF 193 нм, числовая апертура 0,6. Разрешение фоторезиста 0,13 мкм, уровень интеграции микросхем 256 Мb
- Дальний ультрафиолет. Длина волны эксимерного лазера ArF 157 нм, числовая апертура 0,6. Разрешение фоторезиста 0,09 мкм, уровень интеграции до микросхем 1 Gb.

Достижение предельного разрешения на каждой длине волны требовало решения сложнейших аппаратурных проблем.

Переход к каждой новой длине волны требовало разработки новых фоторезистов удовлетворяющих совокупности следующих ключевых требований

- Под воздействием излучения резист должен менять гидрофобно гидрофильные свойства так, чтобы пленка фоторезиста после экспонирования могла быть проявлена в подходящем проявителе, как правило, в щелочном растворе.
- Полимерное связующее резиста должно быть прозрачно на длине волны излучения.
- Резист должен обеспечивать высокую устойчивость в процессах плазмохимического травления.
- Резист должен иметь высокую температуру стеклования, пленка резиста должна сохранять рисунок при высоких температурах, развивающихся в процессе

плазмохимического травления.

- Резист должен иметь хорошую адгезию к различным подложкам.
- Резист должен иметь разумные сроки хранения и минимальные токсикологические риски.

В диапазоне длин волн 436÷365 нм этим требованиям вполне удовлетворяют фоторезисты на основе нафтохинондиазидов и новолачных смол. Однако эти фоторезисты оказались непригодны для длин волн дальнего ультрафиолета (ДУФ диапазон), поскольку новолачные смолы в этом диапазоне сильно поглощают свет. В 80-х годах прошлого века начались разработки фоторезистов с химическим усилением (ФХУ).

Механизм работы резистов ФХУ основан на генерации светочувствительным компонентом под воздействием света небольшого количества молекул кислоты. При последующей термообработке пленки резиста происходит каталитический процесс, в результате которого под воздействием образовавшейся кислоты полимерное связующее фоторезиста либо сшивается, либо меняет полярность. При сшивании полимерной основы образуется негативное изображение, при изменении полярности - позитивное изображение. Эффективный квантовый выход фоторезистов с химическим усилением очень высок. Резисты ФХУ имеют более высокую светочувствительность по сравнению резистами на основе нафтохинондиазидов.

Первый коммерческий ΦXY появился на рынке 1997 г. и был негативным. Под воздействием света в этом фоторезисте происходила кислотно - катализируемая конденсация фенольной смолы. Однако, в силу своей физико-химической природы негативные ΦXY не нашли широкого применения, основное внимание было уделено разработке позитивных резистов

Хотя ФХУ резисты демонстрируют высокую чувствительность, высокий контраст и высокую разрешающую способность, они имеют несколько серьезных недостатков. Одним из этих недостатков является чувствительность ФХУ резистов к щелочным загрязнениям в воздухе. Так присутствие в воздухе следов аммиака на уровне 1-2 ppb приводит к разрушению изображения в резисте или к появлению Т-профиля линии.

 ΦXY резисты для 248 нм основаны на полимерах n-гидрокси стирола или сополимерах с бутилакрилатом. В зависимости от назначения в резист вводятся различные светочувствительные соединения - генераторы кислот, защитные химические группы и добавки.

ФХУ резисты для 193 нм Акриловые полимеры обеспечивают хорошее разрешение, однако их устойчивость к плазмохимическому травлению невысока. Циклоолефиновые полимеры имеют хорошую плазмохимическую резистентность, однако разрешающая способность их недостаточна.

ФХУ резисты для 157 нм.

Разработка фоторезистов для этой длины волны наталкивается на серьезные проблемы, так как большинство углеводородов сильно поглощают на этой длине волны. Наибольшее внимание привлекают ΦXY фоторезисты на основе фторированных полимеров и силоксанов, которые прозрачны на длине волны 157 нм.

Дальнейшее уменьшение размеров элементов происходит по двум направлениям:

1. Использование иммерсионной литографии. Если между объективом системы экспонирования и пленкой фоторезиста поместить каплю жидкости с показателем преломления *п* близким к материалу объектива, то в этом случае с точки зрения геометрической оптики пропорционально показателю преломления *п* возрастает числовая апертура. Числовая апертура становится больше 1. В соответствие с уравнением (1) при этом увеличивается разрешение R. Такой подход назван иммерсионной литографией, что позволило, используя аппаратуру и резисты для 193 нм достигнуть

разрешения элементов 45 нм и 32 нм.

2. Использование предельного УФ - света с длиной волны 13÷14 нм (EUV литография).

Использование длины волны экспонирования на порядок ниже, чем уже обычная 193 нм литография потребует разработки новых устройств для экспонирования с точностью совмещения до 0,1 нм, что уже приближается к атомным размерам. Одновременно потребуются и новые фоторезисты.

Осталось добавить, что компания Intel в 2008 г. начала выпуск четырехядерных процессоров Intel Core 2 Extreme на базе 45 нм литографии с плотности упаковки 800 млн. транзисторов и представила SRAM на 32 нм платформе с числом транзисторов 1,9 миллиарда штук.